18. Census returns.[4 points] Let $S=$ randomly selected person receives a short census, $L=$ randomly selected person receives a long census and $O=$ randomly selected person completes online. We are given that $P(S)=0.8, P(L)=0.2, P(S$ and $O)=0.15$, $P(L$ and $O)=0.04(4 \%)$
a) $P(O)=P(S$ and $O)+P(L$ and $O)=0.15+0.04=0.19(19 \%)$
b) $P(S$ and $O)=0.15(15 \%)$
c) $P(S$ or $O)=P(S)+P(O)-P(S$ and $O)=0.8+0.19-0.15=0.84(84 \%$
d) $P\left(S_{c}\right.$ and $\left.O_{c}\right)=P(S \text { or } O)_{c}=1-P(S$ or $O)=1-0.84=0.16(16 \%)$

23. Movies. [4 points]

a) $51 / 240=0.2125$
b) $(31+38) / 240=0.2875$
c) $(14+15) / 240=0.1208$
d) $0.2875+0.2125-0.1208=0.3792$

Chapter 15

20. Death penalty. [4 points] Construct a two-way table of the conditional probabilities, including the marginal probabilities.
a) P (favour the death penalty)
$=0.26+0.12+0.24$
$=0.62$
b)
$P($ favour death penalty Republican $)=$
P (favour death penalty and Rep.) $/ P$ (Republican)
$=0.26 / 0.30=0.867$
Consider only the Republican row. The probability of favouring the death penalty is 0.26 out of a total of 0.30 for that row.
c)
$P($ Democrat favour death penalty $)=$
$P($ Democrat and favour death penalty $) / P$ (favour death penalty)
$=0.12 / 0.62=0.194$
Consider only the Favour column. The probability of being a Democrat is
0.12 out of a total of 0.62 for that column.
d) $P($ Republican or favour death penalty $)=P($ Republican $)+P($ favour death pen.) $-P$ (both)
$=0.30+0.62-0.26$
$=0.66$
The overall probabilities of being a Republican and favouring the death penalty are from the marginal distribution of probability (the totals). The candidate can expect 66% of the votes, provided her estimates are correct.

21. Movies. [4 points]

a) $15 / 38=0.3947$
b) $15 / 51=0.2941$
c) $(21+22+38) /(69+46+56)=81 / 171=0.4737$
d)
$P($ over 30|didn't select a comedy $)=P($ Over 30 and didn't select a comedy $) / P($ didn't select a comedy)
$\left.=\left[\begin{array}{llllll}(9 \cdot & 7 \cdot & 6 \cdot & 39 \cdot & 17 \cdot & 12\end{array}\right) / 240\right] /[(51+85) / 240]$
= 90/136
$=45 / 68=0.6618$
45. Drunks. Organize the information into a tree diagram.
a) $P($ Detain \mid Not Drinking $)=0.2$
b)
P (Detain)
$=P($ Drinking and Det. $)+P($ Not Drinking and Det. $)$
$=(0.12)(0.8)+(0.88)(0.2)$
$=0.272$
c)
$P($ Drunk \mid Det. $)=P($ Drunk and Det. $) / P($ Detain $)$
$=(0.12)(0.8) /[(0.12)(0.8)+(0.88)(0.2)]$
$=0.353$
d)
$P($ Drunk \mid Release $)=P($ Drunk and Release $) / P($ Release $)$
$=(0.12)(0.2) /[(0.12)(0.2)+(0.88)(0.8)]$
$=0.033$

